Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 343: 123187, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38123113

RESUMO

The widespread presence of thiacloprid (THI), a neonicotinoid, raises concerns for human health and the aquatic environment due to its persistence, toxicity, and bioaccumulation. The fate of THI in paddy multimedia systems is mainly governed by irrigation practices, but the potential impacts remain poorly documented. This study investigated the effects of water management practices on THI spatiotemporal dynamics in paddy multimedia systems by combining soil column experiments and a non-steady-state multimedia model. The results indicated the wetting-drying cycle (WDC) irrigation reduced THI occurrences in environmental phases (i.e., soil, interstitial water, and overlying water) and accelerated the THI loss through the THI aerobic degradation process. THI occurrences in the soil and water phases decreased from 18.8% for conventional flooding (CF) treatment to 9.2% for severe wetting-drying cycle (SW) treatment after 29 days, while the half-lives shortened from 11.1 days to 7.3 days, respectively. Meanwhile, the WDC decreased THI outflow from leakage water, which reduced the THI risk of leaching. There was no significant difference in THI plant uptake and volatilization between CF and WDC treatments. The mean proportions of THI fate in paddy multimedia systems followed the order: THI degradation (57.7%), outflow from leakage water (25.5%), occurrence in soil (12.4%), plant uptake (3.4%), occurrence in interstitial water (0.7%), occurrence in overlying water (0.3%), volatilization (<0.1%) after 29 days. The sensitivity analysis identified the soil organic carbon partition coefficient (KOC) as the most sensitive parameter affecting THI's fate. In addition, the topsoil layers of 0-4 cm were the main sink of THI, holding 67% of THI occurrence in the soil phase. The THI occurrence in interstitial water was distributed evenly throughout the soil profile. These findings made beneficial theoretical supplements and provided valuable empirical evidence for water management practices to reduce the THI ecological risk.


Assuntos
Oryza , Solo , Tiazinas , Humanos , Multimídia , Carbono , Água , Neonicotinoides
2.
Environ Int ; 169: 107500, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36088871

RESUMO

Neonicotinoid (NEO) pesticides have become a potential risk to ecological safety and human health after application. The combined use of biochar and organic fertilizer (OF) is a promising approach to reduce pesticide adverse effects and improve soil fertility in agricultural soils. However, the combined remediation effects of biochar and OF on immobilization and dissipation of NEOs in soils have not previously been systematically investigated. In this study, biochars derived from peanut shell prepared at low/high pyrolysis temperatures (PS400 and PS900) were combined with composted chicken manure (CCM) as an example for OF to remediate contaminated soils toward six typical NEOs, nitenpyram (NIT), thiamethoxam (THIA), clothianidin (CLO), imidacloprid (IMI), acetamiprid (ACE), thiacloprid (THI). Results shown that both biochars and CCM were effective in improving soil sorption capacity and immobilization efficiency. The Freundlich affinity parameters (Kf) of NEOs in soils increased 7.2-12.0 times after the combined remediation of biochar and CCM, and the Kf of six NEOs had negative correlation with their lipophilicity (p < 0.05), which followed by THI > ACE ≈ IMI > CLO > THIA > NIT. Meanwhile, NEOs-abiotic degradation was accelerated by biochar, CCM and their combined addition by adjusting soil pH and stimulating hydrolysis action. Biotic degradation was dominant in NEOs dissipation processes in amended soils, and the contribution ratios of biotic degradation (CRbio) were in the range of 25.4-99.0%. The combined use of biochar and CCM selectively stimulated the relative abundance of NEOs-degraders, which simplified abiotic degradation of -NO2-containing NEOs (viz., NIT, THIA, CLO, and IMI), but inhibited -C≡N-containing NEOs (viz., ACE and THI). The combined remediation provided a strategy for immobilizing NEOs and facilitating dissipation of -NO2-containing NEOs in soils. The results in this study provide valuable information for policymakers and decision-makers to choose appropriate soil remediation approaches with respect to the NEO types.


Assuntos
Praguicidas , Poluentes do Solo , Adsorção , Carvão Vegetal , Fertilizantes , Guanidinas , Humanos , Esterco , Neonicotinoides , Nitrocompostos , Dióxido de Nitrogênio , Solo , Poluentes do Solo/análise , Tiametoxam , Tiazinas , Tiazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA